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Abstract. We discuss theoretically the adsorption of linear weakly charged polyelectrolyte solutions on an
oppositely charged solid surface using the classical self-consistent mean field theory. If the solid surface
has an indifferent short range interaction with the polymer (at the crossover point between attraction and
repulsion), we show that its charge is always overcompensated by the adsorption of the polymer. At low
ionic strength, the overcompensated charge per unit area is proportional to the inverse screening length
κ and the thickness of the adsorbed layer is of the order of the thickness of a single adsorbed chain. At
higher ionic strength, the electrostatic interaction is strongly screened and is equivalent to an effective
excluded volume. The overcompensated charge is then proportional to the bare surface charge. These
results provide a theoretical basis to explain the formation of the polyelectrolyte multilayers that have
been made by successive adsorption of polyelectrolyte layers of opposite signs.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 68.10.-m Fluid surfaces
and fluid-fluid interfaces – 41.20.-q Electric, magnetic, and electromagnetic fields

1 Introduction

Charged polymers or polyelectrolytes play an important
role in many problems of physical chemistry or formu-
lation in aqueous solvents. Typical examples would be
waste water treatment or paper making where charged
polymers are used to control the stabilisation of charged
colloidal suspensions or all the physical problems related
to biopolymers which are mostly polyelectrolytes. The pre-
cise description of the chain properties and the thermody-
namics in polyelectrolyte solutions are formidable prob-
lems which have not been fully solved yet [1,2]. Some of
the simplest questions such as the influence of the ionic
strength on the local stiffness of the chains or the chain
conformation in semidilute solutions where they overlap
are still a matter of important controversies [3,4].

In most of the important applications (colloidal sta-
bilisation, interaction of biopolymers with charged pro-
teins), the polyelectrolyte molecules interact with charged
objects to form charged complexes. Another widely stud-
ied example is the formation of polyelectrolyte multilay-
ers introduced by Decher [5,6]: one starts from a charged
surface and forms successive layers of positively charged
and negatively charged polymer by successive adsorption.
All these experiments have prompted theoretical stud-
ies of polyelectrolyte adsorption either on a flat surface
[7–10,12] or on a curved surface (small spheres) [13,14].

In this paper we want to focus on one specific aspect
of polyelectrolyte adsorption namely charge inversion: un-
der which condition can the charge of a planar surface
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be inverted by adsorption of an oppositely charged poly-
electrolyte and what are the parameters monitoring this
inversion. Charge inversion at each step seems to be the
driving force for polyelectrolyte multilayer formation and
has been experimentally demonstrated in this case [15], it
has also been shown to occur in various adsorption exper-
iments [16]. On the theoretical side, it has recently been
proven that the adsorption of a charged chain on an op-
positely charged sphere can overcompensate the charge
of the sphere. Charge inversion has also been shown to
be at the origin of attractive interactions between planar
surfaces of identical charge [11].

As in most of the existing theoretical work, we use
here a mean field self-consistent approach; we try to set
the limit of the approximations involved in this approach
by using scaling laws. We consider two limits of adsorp-
tion at low ionic strength and high ionic strength in the
two following sections and the last section presents our
concluding remarks.

2 Polyelectrolyte adsorption at low
ionic strength

We consider a dilute polyelectrolyte solution in a θ sol-
vent where the polyelectrolyte chains of degree of poly-
merisation N have fN positively charged monomers, f is
the charge fraction. The solution is in contact with a neg-
atively charged surface perpendicular to the z direction
carrying σ charges per unit area. Because of the finite ionic
strength of the solution, the electrostatic interactions are
screened over the Debye length κ−1.
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The adsorption of a single polyelectrolyte chain on a
charged surface has been studied by several authors [8,17].
The chain adsorbs in a flat configuration with a thick-
ness δ = (4π`Bfσ)−1/3 where `B is the Bjerrum length
related to the dielectric constant of water εw, the elemen-

tary charge q and the temperature T by `B = q2

4πεwkBT
; for

simplicity, we have chosen the unit length such that the
size a of a monomer satisfies a2/6 = 1. This result is valid
at large enough surface charge as long as δ is smaller than
the Gaussian radius of gyration of the chains R = N1/2.
In this section, we study the limit of low ionic strength
corresponding to κδ � 1.

In order to describe the chain statistics close to the sur-
face, we use Edwards propagator approach in the ground
state dominance approximation. We thus introduce a
chain order parameter ψ related to the local concentra-
tion by c(z) = ψ2. This mean field description implicitly
assumes that the chains are Gaussian. As the thickness of
the adsorbed layer turns out to be very small (of order δ)
the stretched polyelectrolyte chains lie parallel to the sur-
face and in order to study the concentration variation in
the z direction, we need only to study the transverse fluc-
tuations of the chains which have Gaussian statistics. We
thus expect the propagator approach to be accurate for
this purpose. Our mean field description does not how-
ever take into account the concentration fluctuations in
the directions parallel to the plane and thus does not give
a good description in these directions where the chains are
stretched. The ground state dominance approximation is
not sufficient to study the adsorption of neutral polymer
chains as it ignores the existence of the tail sections of the
chains [18]; for polyelectrolytes, it can be shown a pos-
teriori that the monomers belonging to the tails play a
negligible role and can be ignored. In a first step, we con-
sider only electrostatic interactions so that the polymer
chains only feel the local average electrostatic potential
V (z) (we use here dimensionless units, the real potential
is kBTV

q ). The Edwards equation for the order parameter

reads

0 = −
∂2ψ

∂z2
+ (fV (z) + ε)ψ. (1)

The ground state binding energy ε is determined below.
The electrostatic potential in the mean field approxima-
tion satisfies the Poisson-Boltzmann equation. We assume
throughout this paper that the surface charge is not too
high and that this equation can be linearised (Debye-
Hückel approximation)

∂2V

∂z2
= κ2V − 4π`Bfψ

2. (2)

The boundary condition on the adsorbing surface is
∂V
∂z

= 4π`Bσ. The mean field equations for the concen-
tration profile and the electrostatic potential are similar
to those solved numerically by Varoqui [12] and Borukhov
and coworkers [10] who did not linearise the Poisson-
Boltzmann equation; these authors have also given scaling
laws to interpret their results on the layer thickness and on

the adsorbed polymer amounts. In reference [10], a max-
imum in the electrostatic potential is found numerically;
this is the signature of charge inversion.

In addition to the mean field assumption, the two ba-
sic equations make two further approximations: excluded
volume is neglected and the electrostatic potential is con-
sidered as small so that the equation (2) can be linearised.
Even in a θ solvent where the second virial coefficient van-
ishes, excluded volume interactions can become important
close to the surface where the concentration is high (the
third term in the virial expansion may become important);
this is discussed below. In the limit of high ionic strength
the electrostatic potential is small and the Debye-Hückel
equation can always be used. In the limit of low ionic
strength the Debye-Hückel approximation can be used if
the single adsorbed chain thickness δ is smaller than the
so-called Gouy-Chapman length λ = 1

2πσ`B
.

In the asymptotic limit of low ionic strength κδ � 1,
we solve these equations by matching asymptotic expan-
sions. In the outer region, at large distances (of order κ−1),
the adsorbed polymer layer can be considered as infinitely
thin and in a first approximation, it only renormalises
the surface charge. If the adsorbance (the total number
of adsorbed monomers per unit area) is Γ , the effective
charge of the surface is ∆σ = fΓ −σ and the electrostatic
potential is given by the standard Debye-Hückel formula
V (z) = 4π`B∆σ

κ
exp−κz. We are studying here the over-

compensation of the surface charge by polyelectrolyte ad-
sorption, therefore ∆σ and the electrostatic potential are
positive.

In the inner region (the adsorbed layer), the small ions
can be neglected and we ignore the term proportional to
κ2 in the Debye-Hückel equation. It is then useful to define
reduced units by y = z/δ, V = 4π`BσδṼ , ψ = ( σfδ )1/2ψ̃

and ε̃ = δ2ε. We find the concentration in two steps. We
first integrate the Poisson equation in order to express the
electrostatic potential as a function of the polymer order
parameter. The integration constant is found by matching
the potential with the outer region. The charge overcom-
pensation is small and we write ∆σ = σκδα2. The match-
ing of the potential leads to Ṽ (∞) = α2 and if we assume
as checked below that α is or order one, the matching of
the electric field gives a vanishing electric field at infinity
in the inner region. The electrostatic potential then reads

Ṽ (y) = α2 −

∫ ∞
y

dy′(y′ − y)ψ̃2(y′). (3)

We then obtain an independent equation for the order
parameter. This equation can be simplified by a further
rescaling. We introduce β2 = α2 + ε̃ and define x = βy

and φ = ψ̃/β2 The equation for the order parameter then
reads

0 = −
∂2φ

∂x2
− φ

∫ ∞
x

dx′(x′ − x)φ2(x′) + φ. (4)

We need two boundary conditions; at infinity φ must van-
ish and clearly, φ ∝ exp−x; the boundary condition at the
surface is fixed by the non electrostatic short range inter-
action between the monomers and the surface. In general,
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this is taken into account by imposing the logarithmic
derivative of the order parameter on the surface. We con-
sider here only the two limiting cases of a hard surface
(φ(0) = 0) and an indifferent surface (∂φ∂x (0) = 0). In
these cases, the equation for φ does not depend on any
parameter and could be for example solved numerically.

At lowest order in κ, the charge over compensation is
small and Γ = σ/f . This imposes that 1 =

∫∞
0
dyψ̃2 and

leads to

β2 = α2 + ε̃ = [

∫ ∞
0

dxφ2]−2/3. (5)

The constant β is smaller in case of adsorption on a hard
surface than in case of adsorption on an indifferent sur-
face. The thickness of the adsorbed layer is δ

2β ; it is of the

same order as the thickness of an isolated adsorbed chain
and it is larger for a hard surface i.e. when the surface is
more repulsive as expected. The scaling variation of the
adsorbed layer thickness with the surface charge and the
charge fraction is similar to that obtained in reference [10]
(the thickness is there expressed in terms of the surface
potential).

The reduced binding energy is obtained by balanc-
ing the chemical potential of adsorbed chains with the
chemical potential of free chains in the bulk. The chemi-
cal potential of free chains is µb = kBT log(cb/N) + NFb
where cb is the bulk concentration and Fb the free en-
ergy per monomer of one chain in the bulk taking as a
reference state a noninteracting Gaussian chain. The sin-
gle chain free energy Fb cannot be obtained simply from
mean field arguments. We calculate it here using scaling
arguments and the electrostatic blob model appropriate
to describe isolated weakly charged chains [1], the free en-
ergy is Fb ∝

kBT
ξe2 where ξe ∝ (f2`B)−1/3 is the so-called

electrostatic blob size. The chemical potential of one chain
in the adsorbed layer is calculated in a similar way as for
adsorbed neutral chains

µs/kBT = −Nε− kBT logZ + kBT log(Γ/N)

where Z is the chain partition function that can be cal-
culated from the chain order parameter Z = δβ2K2 with
K =

∫∞
0 dxφ(x). The reduced binding energy is then

ε̃ =
δ2

N
log(

Γ

δβ2K2cb
)− δ2 Fb

kBT
· (6)

Note that if the bulk concentration is not too low, ε̃ is neg-
ative; this is due to the fact that the electrostatic energy
of the chains decreases as they adsorb.

For very long chains, there is always overcompensation
of the charge of the surface and the excess charge is ∆σ

σ
∝

κδ(1 + δ2

ξ2e
) (all numerical prefactors have been omitted).

The excess charge increases thus with ionic strength at
low ionic strength. The excess charge also increases very
weakly with the bulk concentration due to the logarithmic
term in the binding energy.

So far, we have neglected any excluded volume inter-
action. The concentration in the adsorbed polyelectrolyte

layer varies with the surface charge as σ
fδ
' σ4/3. Even in a

θ solvent as the concentration gets very high, the excluded
volume interaction can become relevant. The excluded vol-
ume in a θ solvent is due to the three body interactions,
each monomer feeling a mean field potential Umf = w2c2

where the third virial coefficient w2 is of order 1. The ex-
cluded volume potential is small compared to the electro-
static potential if the thickness of the adsorbed layer δ is
larger than the size of the electrostatic blobs ξe i.e. when
σ � σc ' f . At high surface charge σ � σc, the chain
entropy becomes small and the structure of the adsorbed
layer results from a balance between the electrostatic at-
traction by the surface and the excluded volume. We were
not able in this case to make a full analysis of the adsorbed
layer as the one presented above. However assuming that
the concentration in the adsorbed layer is constant, one
finds by direct minimisation of the total free energy that
the adsorbed layer thickness δev is not equal to the sin-

gle chain value, but δev varies as δev '
ξ2e
δ
' ( σ

4π`Bf3 )1/3.

The adsorbed layer thickness has thus a non monotonic
variation with the surface charge, it is equal to δ and
decays with σ at low surface charge and it increases at
high surface charge. There is also charge inversion at high
surface charge and the excess charge is found to scale as
∆σ
σ
' κδev.
In the limit where the surface charge is small, the struc-

ture of the adsorbed layer can be given a simple interpreta-
tion in terms of electrostatic blobs. In the dilute bulk solu-
tion, the different chains interact only weakly and they can
be considered as linear chains of electrostatic blobs with a
radius R ' N

ξe
' N(f2`B)1/3. The chain conformation is

very anisotropic and the transverse radius of the chains is
due to Gaussian fluctuations Rperp ' N1/2. The thickness
of the adsorbed layer is very small compared to the chain
size and in the adsorbed layer the chains lie almost flat
parallel to the adsorbing surface. Locally the chains keep
their stretched structure as a linear string of blobs and
form a two dimensional semidilute solution. The distance
between chains can be estimated from a scaling argument
and varies as ξ2 '

fξe
σ

. Sections of chain with a size ξ2
can be considered as independent and approximately re-
tain their bulk structure; like isolated chains, they are con-
fined upon adsorption in a flat conformation with a thick-
ness δ in agreement with the mean field calculation. One
can check explicitly that the Gaussian radius of these sec-
tions is indeed larger than the layer thickness δ and that
these chain sections are indeed confined. If the surface
charge becomes too low, σ � σ∗ ' 1/(Nf1/3`

2/3
B ), the

two dimensional density of chains required to neutralise
the charged surface is smaller than the overlap density
and the adsorbed chains form a dilute solution.

The mean field calculation neglects the charge fluctu-
ations in the plane parallel to the adsorbing surface; this
can be important in the small density limit. The energy
associated to these fluctuations should be taken into ac-
count in the chemical potential balance of equation (6)
and must be substracted from the bulk energy Fb. The
precise value of this energy is however difficult to estimate
as it would require a precise knowledge of the structure of
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the adsorbed solution. In particular it is not clear whether
the adsorbed two-dimensional solution remains isotropic
or has a two dimensional nematic order. We still believe
nevertheless, that the qualitative result of the mean field
approach remains correct: there is overcompensation of
the surface charge and the excess charge is proportional
to the inverse screening length κ.

3 Polyelectrolyte adsorption at high
ionic strength

We now study the adsorption of the polyelectrolyte solu-
tion on the charged surface when the ionic strength is large
i.e. when the Debye-Hückel screening length is smaller
than the thickness of the adsorbed layer in the absence of
salt (δ or δev). As in the previous section, in a first step,
we use a mean field approach and we ignore any excluded
volume interaction. The local monomer concentration or
the propagator (in the ground state dominance approxi-
mation) and the electrostatic potential are obtained from
equations (1, 2). In the strong adsorption limit, it can be
checked a posteriori that at any point in the adsorbed
layer, fc(z)/κ � σ. Using this approximation, the Pois-
son equation for the electrostatic potential can be solved
by assuming that the typical distance over which the con-
centration varies is larger than the screening length. A
uniformly valid solution is

V (z) = −
4π`Bσ

κ
exp−(κz) +

4π`Bfψ
2

κ2
· (7)

At short distances the screening of the electrostatic field
by the monomers is small and the electrostatic potential
is that of the bare charged surface in the salt solution.
At distances larger than the screening length the surface
field is screened and the electrostatic interactions between
monomers are equivalent to an effective excluded volume

between monomers vel = 4π`Bf
2

κ2 . In order to solve the
propagator equation, we also match asymptotic solutions.
In the vicinity of the surface, the relevant length scale is
the screening length κ−1. In the limit of strong screen-
ing there is no adsorption if the adsorbing surface is too
repulsive for the monomers (there is for example no ad-
sorption on a hard wall as discussed by Varoqui [12]).
We consider here only an almost indifferent surface and
characterise the short range non-electrostatic interactions
by an extrapolation length d which imposes the bound-
ary condition for the order parameter on the solid surface
1
ψ
∂ψ
∂z (z = 0) = − 1

d . (This is equivalent to introducing

a localised delta function potential on the wall). We as-
sume throughout the paper that |d| � κ−1. Note that
d can be negative if the short range potential is repul-
sive. We choose a distance d1 from the adsorbing surface
which is larger than the screening length (d1 � κ−1) but
smaller than any characteristic length scale for the concen-
tration variation in the external part of the adsorbed layer
(the outer region). Within a distance d1 from the sur-
face, the concentration and thus the order parameter are

roughly constant. Using this approximation, we integrate
the propagator equation for z between 0 and d1. At leading
order, the electrostatic excluded volume term only gives a
small contribution and we find

−
1

ψ

∂ψ

∂z
(z = d1) =

1

deff
=

1

d
+

1

del
(8)

where we have defined the electrostatic extrapolation
length del = κ2δ3. Note that the effective extrapola-
tion length gives exactly the thickness of a single ad-
sorbed chain on the same surface as can be obtained
by solving the propagator equation for a single chain
in the ground state dominance approximation. This
length was also found from the scaling arguments of
Borukhov and coworkers [10]; and it was interpreted
as the thickness of the adsorbed layer. If the short
range potential is repulsive, there is no adsorption if
the surface charge is too weak (deff negative), the

adsorption threshold is given by σa = − κ2

4π`Bfd
.

In the external part of the adsorbed layer, the surface
electric field is entirely screened and within our mean field
approximations, the polyelectrolyte behaves as a polymer
in a good solvent with an electrostatic excluded volume

vel = 4π`Bf
2

κ2 . The boundary condition for the propagator
equation on the surface is obtained by matching with the
inner layer and using equation (8) as the boundary condi-
tion when z → 0. All the results that have been obtained
for polymers in a good solvent [18] concerning the loops
and tails structure of the adsorbed layer or the adsorbance
can be used directly. We will suppose here that the poly-
mer molecular weight is very large and thus that the chain
radius of gyration is much larger than deff . The adsorbed
monomer amount is then

Γ =
2σ

f
+

2κ2

4π`Bf2d
· (9)

If d is not negative and too small, i.e. if the short range po-
tential is not too repulsive, our calculation predicts charge
inversion. In the limit where the adsorbing surface is in-
different, the adsorbed charge is exactly twice the charge
of the adsorbing surface. This is the exact asymptotic re-
sult obtained from the mean field equations in the high
salt limit (κδ � 1); for finite ionic strength, corrections to
this result may become important but we were not able
to calculate them.

So far, we have neglected any excluded volume interac-
tion. In order to decide whether excluded volume is rele-
vant, we compare the mean field potential due to the three
body interactions (third virial coefficient) to the effective
electrostatic excluded volume. As in the absence of salt,
the excluded volume interaction is negligible as long as
ξe � δ i.e. when the surface charge is smaller than the
critical value σc ' f . If the surface charge is larger than
this value the three body interactions become important
in the vicinity of the adsorbing surface. We were not in this
case able to solve systematically the self-consistent mean
field equations. Qualitatively, the polyelectrolyte adsorbs
as a neutral polymer in a θ solvent with an interaction



J.F. Joanny: Polyelectrolyte adsorption and charge inversion 121

with the surface characterised by the extrapolation length
deff . The adsorbed amount increases then with the sur-
face charge as Γ ' log σ

f
. It increases thus slower than the

surface charge at high charge and we do not expect charge
inversion in this case.

4 Concluding remarks

The main result of our study is that in many cases poly-
electrolyte adsorption leads to an overcompensation of
the surface charge and thus to an inversion of the sur-
face charge. This is always the case in the limit of weak
screening where the Debye screening length is larger than
the thickness of the adsorbed polymer layer. The electro-
static interaction is in this case long ranged; the chains
in the solution experience an attractive force from any
oppositely charged surface and adsorption continues until
the effective surface charge does not have the same sign
as that of the adsorbing chains. In the absence of salt,
the excess surface charge must vanish since the electro-
static free energy diverges. The mean field theory predicts
that the excess charge vanishes linearly with the inverse
screening length. In practice, even if the bulk polymer con-
centration is very low the counterions contribute to the
screening and must be included in the calculation of the
screening length; the overcompensated charge then does
not exactly vanish in the limit of no added salt; there ex-
ists however a broad range of salt concentration where the
asymptotic laws found in this paper can be used. In the
limit of high ionic strength the electric field of the surface
is screened and charge inversion occurs only if the short
range interaction between the monomers and the surface
is not too strong and if the surface charge is not too high.
Note also that the existence of excluded volume interac-
tions strongly reduces the adsorbed polymer amount and
eventually suppresses the charge inversion.

These results provide a good starting point for the the-
oretical description of the so-called polyelectrolytes mul-
tilayers. If the ionic strength is weak, the charge can be
inverted at each step and a new layer of opposite sign
can be added to the multilayer. The case of high ionic
strength is different. Even if there is no charge inversion,
the electrostatic potential at the surface of the adsorbed
layer has the same sign as the polymer charge as long as
the adsorbed polymer layer is thicker than the screening
length. The addition of a next layer of opposite charge
then occurs via the formation of complexes between poly-
electrolytes of opposite charges at the interface between
consecutive layers.

The main limitation of this work is the use of the self
consistent mean field theory. In the low ionic strength case,
the thickness of the adsorbed layer is very small and very
long chains almost lay flat parallel to the interface. They
have Gaussian statistics in the transverse direction as as-

sumed in the mean field theory. There are however strong
concentration fluctuations in the direction parallel to the
adsorbing surface. The energy associated to these fluctua-
tions provokes at least locally the chain stretching. It must
be taken into account in the free energy balances to have
a more accurate description. We do not expect that to
change qualitatively the transverse structure of the layer
but it would certainly affect the precise value of the excess
surface charge. When the surface charge is high (σ � σc),
the excluded volume interaction becomes relevant even at
the θ point. We were not able to give a complete descrip-
tion and we only propose scaling laws in this limit; a more
detailed study would be needed.

In the limit of high ionic strength, as for neutral poly-
mer chains, the adsorbed layer locally has the structure of
a semidilute polymer solution. The mean field approach ig-
nores the concentration fluctuations and gives only a qual-
itative description. The theoretical description of semidi-
lute polymer solutions and more precisely the problem of
the chain conformation in semidilute solutions are highly
controversial subjects [1,3]. Even if it is not fully justified
theoretically, the scaling theory of Pfeuty and cowork-
ers [19] gives a rather good description of the proper-
ties of semidilute solutions. The same scaling approach
can be used to study adsorbed polyelectrolyte layers at
strong ionic strength following the lines of de Gennes [20].
One however needs to make a scaling estimate of the
extrapolation length which corresponds to the thickness
of a single adsorbed chain. This however would require
a detailed understanding of the short range effects (the
special transition effect) that does not seem available at
the present time. If we ignore the associated divergence
of the concentration profile, we find a polymer adsorbed
amount Γ ' (σ/f)1/2. When the surface charge is small
(σ � σc ∝ f) there is still overcompensation of the charge
as in the mean field theory.

We have assumed throughout the paper that the sur-
face charge is uniformly distributed on the surface. In
most practical cases the surface has discrete charges. The
discreteness of the charges is not relevant if the average
distance between charges L = σ−1/2 is smaller than the
relevant length of the problem. In the absence of salt,
this criterion is satisfied at high enough surface charge
σ � (f`B)2. If this criterion is not satisfied, a more de-
tailed theory is needed. We only expect logarithmic cor-
rections to the results presented here.

A final limitation of our work is that we a priori as-
sume that the adsorbed polyelectrolyte layer has a thermo-
dynamic equilibrium structure. There may however exist
strong potential barriers to reach the equilibrium struc-
ture in particular in the case where the electrostatic in-
teractions are not screened and the actual structure could
be very different from the equilibrium one.

I would like to thank A. Johner for a critical reading of the
manuscript.
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